The Sylvester and Bézout Resultant Matrices for Blind Image Deconvolution

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blind image deconvolution using the Sylvester matrix

Blind image deconvolution refers to the process of determining both an exact image and the blurring function from its inexact image. This thesis presents a solution of the blind image deconvolution problem using polynomial computations. The proposed solution does not require prior knowledge of the blurring function or noise level. Blind image deconvolution is needed in many applications, such a...

متن کامل

The Sylvester Resultant Matrix and Image Deblurring

This paper describes the application of the Sylvester resultant matrix to image deblurring. In particular, an image is represented as a bivariate polynomial and it is shown that operations on polynomials, specifically greatest common divisor (GCD) computations and polynomial divisions, enable the point spread function to be calculated and an image to be deblurred. The GCD computations are perfo...

متن کامل

Constructing Sylvester-type resultant matrices using the Dixon formulation

A new method for constructing Sylvester-type resultant matrices for multivariate elimination is proposed. Unlike sparse resultant constructions discussed recently in the literature or the Macaulay resultant construction, the proposed method does not explicitly use the support of a polynomial system in the construction. Instead, a multiplier set for each polynomial is obtained from the Dixon for...

متن کامل

On the Height of the Sylvester Resultant

X iv :m at h/ 03 10 27 6v 2 [ m at h. N T ] 1 3 M ay 2 00 4 ON THE HEIGHT OF THE SYLVESTER RESULTANT CARLOS D’ANDREA AND KEVIN G. HARE Abstract. Let n be a positive integer. We consider the Sylvester resultant of f and g, where f is a generic polynomial of degree 2 or 3 and g is a generic polynomial of degree n. If f is a quadratic polynomial, we find the resultant’s height. If f is a cubic pol...

متن کامل

The Univariate Discriminant via the Sylvester Resultant

Remark 1.2 The Fundamental Theorem of Algebra enters in the very last inequality: the fact that having d distinct roots implies that Res(d,d−1)(f, f ) 6= 0. Later we will see a refinement of the above theorem giving a positive lower bound even when Res(d,d−1)(f, f )=0. ⋄ A key result we’ll need is the following algebraic identity. Lemma 1.3 Following the notation of Theorem 1.1, we have Res(d,d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Imaging and Vision

سال: 2018

ISSN: 0924-9907,1573-7683

DOI: 10.1007/s10851-018-0812-2